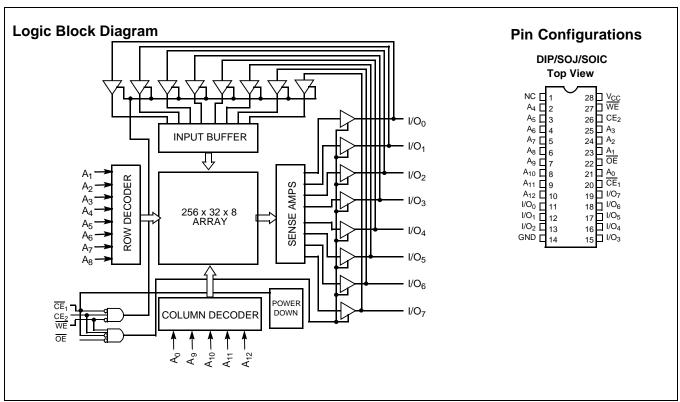


64K (8K x 8) Static RAM

Features


- Pin- and function-compatible with CY7C185
- · High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - I_{CC} = 60 mA @ 10 ns
- · Low CMOS standby power
 - $I_{SB2} = 3 \text{ mA}$
- · CMOS for optimum speed/power
- Data Retention at 2.0V
- Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , and \overline{OE} features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · Available in Lead (Pb)-Free Packages

Functional Description[1]

The CY7C185D is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\text{CE}}_1$), an active HIGH chip enable ($\overline{\text{CE}}_2$), and active LOW output enable ($\overline{\text{OE}}$) and three-state drivers. This device has an automatic power-down feature ($\overline{\text{CE}}_1$ or $\overline{\text{CE}}_2$), reducing the power consumption when deselected.

An active LOW write enable signal ($\overline{\text{WE}}$) $\overline{\text{controls}}$ $\overline{\text{the}}$ writing/reading operation of the memory. When $\overline{\text{CE}}_1$ and $\overline{\text{WE}}$ inputs are both LOW and $\overline{\text{CE}}_2$ is HIGH, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₂). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}_1$ and $\overline{\text{OE}}$ active LOW, $\overline{\text{CE}}_2$ active HIGH, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.The CY7C185D is in a standard 28-pin 300-mil-wide DIP, SOJ, or SOIC Pb-Free package.

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

	CY7C185D-10	CY7C185D-12	CY7C185D-15	Unit
Maximum Access Time	10	12	15	ns
Maximum Operating Current	60	50	40	mA
Maximum Standby Current	3	3	3	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to +7.0V

DC Input Voltage^[2]......--0.5V to V_{CC} + 0.5V Output Current into Outputs (LOW)......20 mA Static Discharge Voltage..... > 2001V (per MIL-STD-883, Method 3015) Latch-up Current..... > 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}	
Commercial	0°C to +70°C	5V ± 10%	
Industrial	-40°C to +85°C	5V ± 10%	

Electrical Characteristics Over the Operating Range

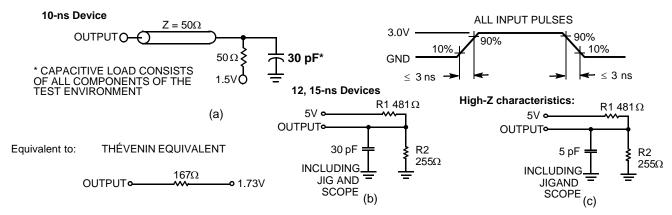
			7C	185D-10	7C185D-12		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	$V_{CC} + 0.3V$	2.0	$V_{CC} + 0.3V$	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	μΑ
l _{oz}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled	-1	+1	-1	+1	μΑ
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		60		50	mA
I _{SB1}	Automatic Power-down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$ Min. Duty Cycle = 100%		10		10	mA
I _{SB2}	Automatic Power-down Current	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE}_1 \geq \text{V}_{CC} - 0.3\text{V}, \\ &\text{or CE}_2 \leq 0.3\text{V} \\ &\text{V}_{IN} \geq \text{V}_{CC} - 0.3\text{V or V}_{IN} \leq 0.3\text{V} \end{aligned}$		3.0		3.0	mA
					7C	185D-15	
Parameter	Description	Test Conditions	S		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA			2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA				0.4	V
V _{IH}	Input HIGH Voltage				2.0	$V_{CC} + 0.3V$	V
V_{IL}	Input LOW Voltage ^[2]				-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$			-1	+1	μΑ
l _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled			-1	+1	μΑ
los	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND				-300	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA				40	mA
I _{SB1}	Automatic Power-down Current	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$ Min. Duty Cycle = 100%				10	mA
I _{SB2}	Automatic Power-down Current	$\begin{array}{l} \text{Max. V}_{CC}, \overline{CE}_1 \geq V_{CC} - 0.3 \text{V or CE} \\ V_{IN} \geq V_{CC} - 0.3 \text{V or V}_{IN} \leq 0.3 \text{V} \end{array}$	2 ≤ 0.3\	/		3.0	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	7	pF

Notes:

- 2. V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} + 2V for pulse durations of less than 20 ns.
 3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 4. Tested initially and after any design or process changes that may affect these parameters.


Document #: 38-05466 Rev. *C

Thermal Resistance^[4]

Parameter	Description	Test Conditions	All-Packages	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	TBD	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[4]		TBD	°C/W

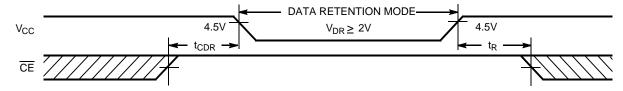
AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range [6]

		7C18	5D-10	7C18	5D-12	7C185D-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•							
t _{power} ^[5]	V _{CC} (typical) to the first access	100		100		100		μS
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE1}	CE ₁ LOW to Data Valid		10		12		15	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		8	ns
t _{LZOE}	OE LOW to Low Z	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[7]		5		6		7	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[8]	3		3		3		ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3		3		3		ns
t _{HZCE}	CE ₁ HIGH to High Z ^[7, 8] CE ₂ LOW to High Z		5		6		7	ns
t _{PU}	CE ₁ LOW to Power-Up CE ₂ to HIGH to Power-Up	0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down CE ₂ LOW to Power-Down		10		12		15	ns

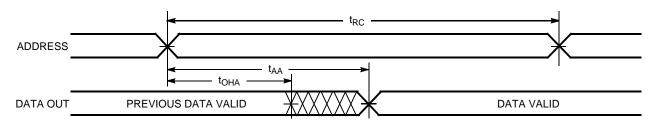
- 5. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 7. t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady state voltage.

 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE1} and t_{LZCE2} for any given device.


Switching Characteristics Over the Operating Range (continued)^[6]

		7C18	7C185D-10		7C185D-12		7C185D-15	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle ^[9]								
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE1}	CE ₁ LOW to Write End	8		10		12		ns
t _{SCE2}	CE ₂ HIGH to Write End	8		10		12		ns
t _{AW}	Address Set-up to Write End	7		10		12		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	7		10		12		ns
t _{SD}	Data Set-up to Write End	6		7		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[7]		6		6		7	ns
t _{LZWE}	WE HIGH to Low Z	3		3		3		ns

Data Retention Characteristics (Over the Operating Range)


Parameter	Desc	cription	Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Non-L, Com'l / Ind'l	$\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V,}$		3	mA
		L-Version Only	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or		1.2	mA
t _{CDR} [4]	Chip Deselect to Data Retention Time		$V_{IN} \leq 0.3V$	0		ns
t _R ^[10]	Operation Recovery Time			t _{RC}		ns

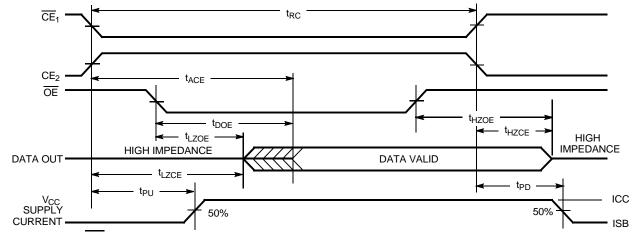
Data Retention Waveform

Switching Waveforms

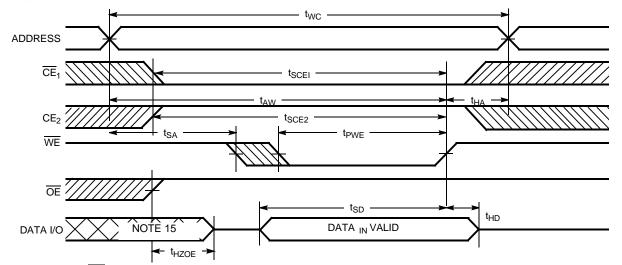
Read Cycle No.1^[11,12]

- 9. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. All 3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

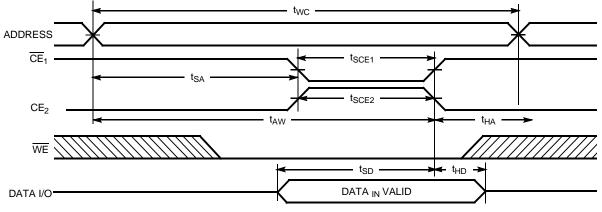
 10. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs.


 11. Device is continuously selected. OE, CE₁ = V_{IL}. CE₂ = V_{IH}.

 12. WE is HIGH for read cycle.



Switching Waveforms (continued)

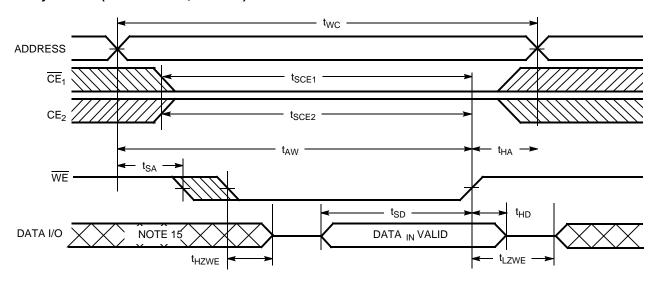

Read Cycle No.2^[13,14]

Write Cycle No. 1 (WE Controlled)[12,14]

Write Cycle No. 2 (CE Controlled)[14,15,16]

Notes:

^{13.} Data I/O is High Z if $\overline{OE} = V_{IH}$, $\overline{CE}_1 = V_{IH}$, $\overline{WE} = V_{IL}$, or $CE_2 = V_{IL}$.


14. The internal write time of the memory is defined by the overlap of \overline{CE}_1 LOW, CE_2 HIGH and \overline{WE} LOW. \overline{CE}_1 and \overline{WE} must be LOW and CE_2 must be HIGH to initiate write. A write can be terminated by \overline{CE}_1 or \overline{WE} going HIGH or \overline{CE}_2 going LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

 ^{15.} During this period, the I/Os are in the output state and input signals should not be applied.
 16. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms (continued)

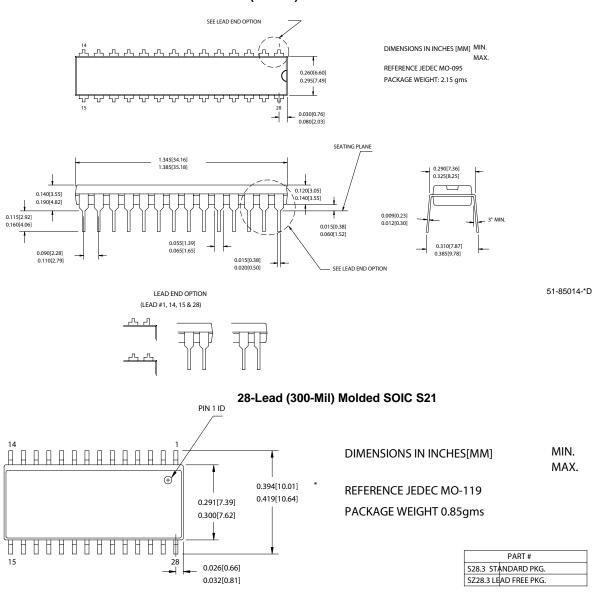
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[14,15,16,17]

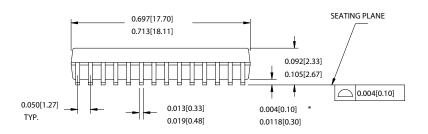
Truth Table

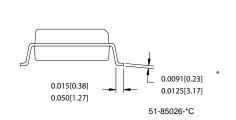
CE ₁	CE ₂	WE	OE	Input/Output	Mode
Н	Х	Х	Х	High Z	Deselect/Power-down
Х	L	Х	Х	High Z	Deselect/Power-down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C185D-10PXC	P21	28-Lead (300-Mil) Molded DIP (Pb-Free)	Commercial
	CY7C185D-10SXC	S21	28-Lead Molded SOIC (Pb-Free)	
	CY7C185D-10VXC	V21	28-Lead Molded SOJ (Pb-Free)	
	CY7C185D-10VXI	V21	28-Lead Molded SOJ (Pb-Free)	Industrial
12	CY7C185D-12PXC	P21	28-Lead (300-Mil) Molded DIP (Pb-Free)	Commercial
	CY7C185D-12SXC	S21	28-Lead Molded SOIC (Pb-Free)	
	CY7C185D-12VXC	V21	28-Lead Molded SOJ (Pb-Free)	
	CY7C185D-12VXI	V21	28-Lead Molded SOJ (Pb-Free)	Industrial
15	CY7C185D-15PXC	P21	28-Lead (300-Mil) Molded DIP (Pb-Free)	Commercial
	CY7C185D-15SXC	S21	28-Lead Molded SOIC (Pb-Free)	
	CY7C185D-15VXC	V21	28-Lead Molded SOJ (Pb-Free)	
	CY7C185D-15VXI	V21	28-Lead Molded SOJ (Pb-Free)	Industrial

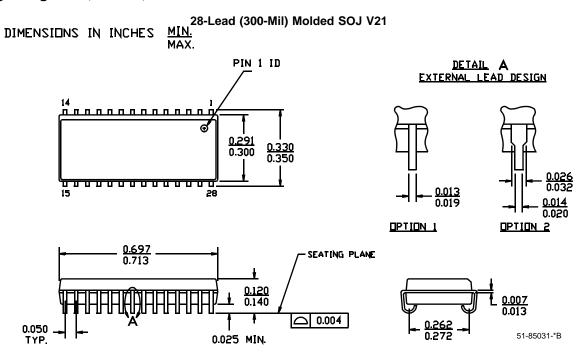

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.


Note: 17. If $\overline{\text{CE}}_1$ goes HIGH or CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.



Package Diagrams

28-Lead (300-Mil) PDIP P21



Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY7C185D 64K (8K x 8) Static RAM (Preliminary) Document Number: 38-05466						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	201560	See ECN	SWI	Advance Datasheet for C9 IPP			
*A	233715	See ECN	RKF	DC parameters are modified as per EROS (Spec # 01-2165) Pb-free offering in Ordering Information			
*B	262950	See ECN	RKF	Added T _{power} Spec in Switching Characteristics table Added Data Retention Characteristics table and waveforms Shaded Ordering Information			
*C	307593	See ECN	RKF	Reduced Speed bins to -10, -12 and -15 ns Added 'Industrial' grade parts to the Ordering Info on Page #6			